Повышение эффективности MySQL. Оптимизация SQL запросов

Управление индексами, то есть как они создаются и поддерживаются — может значительно повлиять на производительность sql запросов.

Очень часто можно применить следующие оптимизации:

  • удалить неиспользуемые индексы
  • определить неиспользуемые вообще и неэффективные индексы
  • улучшить индексы
  • избегать вообще sql запросов!
  • упрощать sql запросы
  • и магия варианты кеширования

Объединение DDL запросов

Запросы, меняющие структуру данных как правило являются блокирующими таблицу. Исторически, выполнение запроса ALTER требовало создания новой копии таблицы, что может быть очень затратным по времени и по объему данных на диске. Поэтому вместо трех запросов с маленькими альтерами намного выгоднее выполнять один объединенный. Это может сэкономить значительное количество времени на задачах по администрированию баз.

Удаление дублирующихся индексов

Дублирующиеся индексы вредны по двум причинам: все запросы на изменение данных будут медленнее, поскольку выполняется двойная работа для поддержания полноты индекса. Кроме того, это создает лишнюю нагрузку на файловую систему, поскольку размер базы становится большим физически и приводит к увеличение времени создания бэкапов и времени восстановления.

Несколько простых условий могут привести к дублированию индексов. Например, mysql не нужен индекс на полях PRIMARY.

Дублирующий индекс также может существовать, если левая часть одного из индексов полностью совпадает с другим индексом.

Утилита pt-duplicate-key-checker из perkona-toolkit — это простой и быстрый способ проверить свою структуру базы на наличие лишних индексов.

Удаление неиспользуемых индексов

Кроме индексов, которые не используются никогда, поскольку являются дублями, могут быть недублирующиеся индексы, которые просто никогда не используются. Такие индексы влияют также, как и дублирующиеся индексы. В стандартном mysql нет никаких способов определить какие индексы неиспользуются, однако в некоторых версиях есть подобная возможность, например при использовании Google MySQL patch.

В этом патче была введена фишка: SHOW INDEX_STATISTICS.

А в обычном mysql сначала необходимо собрать все используемые sql запросы, прогонять их и смотреть план выполнения, собирать при этом информацию о используемых в каждом случае индексах и сводить это в единую таблицу. В любом случае, это полезный опыт.

Оптимизация индексных полей.

Помимо создания новых индексов для повышения производительности, можно повысить быстродействие через дополнительные оптимизации структуры. В эти оптимизации входит использование специальных данных и типов полей. Профит в данном случае — это меньшая нагрузка на диск и больший объем индексов, который может помещаться в оперативной памяти.

Типы данных

Некоторые типы могут быть заменены безболезненно на текущей существующих базах.

BIGINT vs INT

Когда PRIMARY ключ определён как BIGINT AUTO INCREMENT — как правило нет никаких причин использовать именно его. Тип данных INT UNSIGNED AUTO_INCREMENT может хранить максимум числа до 4294967295. Если у вас реально будет больше записей чем это число, вам скорее всего понадобится другая архитектура.

От такого изменения с BIGINT на INT UNSIGNED каждая строка таблицы начинает занимать в 2 раза меньше места на диске, кроме того с 8 байт до 4 снижается размер, занимаемый PRIMARY ключом.

Это пожалуй одно из самых ощутимых простых улучшений, которые можно делать достаточно безболезненно.

DATETIME vs TIMESTAMP

Тут все просто: timestamp — 4 байта, datetime — 8 байт.

ENUM

По возможности надо использовать, потому что:

  • дополнительная проверка целостности данных
  • такое поле будет использовать всего 1 байт для хранения 255 уникальных значений
  • такие поля удобнее читать :)

Исторически, использование enum полей приводило к зависимости базы от изменений возможных значений в enum. Это был блокирующий DDL запрос. Начиная с версии MySQL 5.1 добавление новых вариантов к enum очень быстрое и не связано с размером таблицы.

NULL vs NOT NULL

Если вы не уверены, что колонка может содержать неопределенное значение (NULL), лучше определять ее как NOT NULL. Индекс на такой колонке будет меньше по размеру и будет легче обрабатываться.

Автоматичесие конвертации типов

Когда вы выбираете тип данных для джойнящихся полей, бывает, что тип данных в поле неопределен. Встроенная конверсия может быть абсолютно лишним оверхедом.

Для целочисленных полей, убедитесь что SIGNED и UNSIGNED совпадают, для переменных типов полей, лишней работой может быть конвертация кодировки при джоине, поэтому их тоже обязательно проверять. Частая проблема это автоконвертация между кодировками latin1 и utf8.

Типы колонок

Некоторые типы данных часто хранятся в неправильных колонках. Изменение типа при этом может привести к более эффективному хранению, особенно когда эти колонки включаются в индекс. Рассмотрим несколько типичных примеров.

IP адрес

IPv4 адрес может храниться в поле INT UNSIGNED, которое займет всего 4 байта. Часто встречается ситуация, когда ip адрес хранят в поле VARCHAR(15), которое занимает 12 байт. Одно это изменение может сократить размер на 2/3. Функции INET_ATON() и INET_NTOA служат для конвертации между строкой с ip адресом и числовым значением.

Для IPv6 адресов, которые все сильнее наступают, важно хранить их 128битное цифровое значение в полях BINARY(16) и не использовать VARCHAR для человекочитаемого формата.

MD5

Хранение md5 полей как CHAR(32) является повсеместной практикой. Если вы используете поле VARCHAR(32) вы еще дополнительно добавляете лишний оверхед длины строки для каждого значения. Однако md5 строка — это шестнадцатиричное значение — и его можно хранить эффективнее используя функции UNHEX() и HEX(). В этом случае данные можно хранить в полях BINARY(16). Такое простое действие снизит размер поля с 32 байт до 16 байт. Подобный принцип можно применять к любым шестнадцатиричным значениям.

Основано на книге Рональда Брэдфорда.

Повышение эффективности MySQL. Оптимизация SQL запросов: 3 комментария

  1. Добрый день. Пардон, вопрос не точно по теме, но около неё :)

    Есть произвольный тип записей ‘event’, который отвечает за некоторое событие с соответствующим meta_key = ‘event_date’ в wp_postmeta. Он содержит инфо о дате этого события.

    Требуется выбрать 5 записей такого типа, значение event_date для которых превосходит значение текущей даты с сортировкой по этой самой дате. Я решил задачу следующим образом:

    SELECT DISTINCT wp_posts.ID, wp_posts.post_title
    FROM wp_posts
    INNER JOIN wp_postmeta
    ON wp_posts.ID = wp_postmeta.post_id
    WHERE wp_posts.post_status = ‘publish’
    AND wp_posts.post_type = ‘event’
    AND wp_postmeta.meta_key = ‘event_date’
    AND wp_postmeta.meta_value >= «.$current_time.»
    ORDER BY wp_postmeta.meta_value ASC
    LIMIT 0, 5
    Но если добавить на сайт 100 000 записей этого типа, то выборка проводится сразу по всем, а сортировка происходит по неиндексному полю meta_value.

    Было бы интересно услышать от Вас, что вы думаете о том, что произойдет, если проиндексировать поле meta_value в wp_postmeta (хотя интуитивно понятно, что так делать нельзя) или вообще как можно сие оптимизировать, то есть куда можно запихнуть значение даты для произвольного типа записей, чтобы им было удобно оперировать.

    1. Explain подсказывает, что даже без 100 000 записей так делать не очень хорошо, потому что для сортировки будет осуществляться filesort.
      Создание индекса вполне может быть допустимо, но все зависит от того, какая длина будет выбрана и какая интенсивность записи в эту таблицу в вашем конкретном случае.
      Нормальным вариантом было бы не работать с датами в longtext полях вообще, то есть не привязываться к этому функционалу wp — вместо этого опираться на отдельные колонки с датами создания/модификации.

Добавить комментарий

Ваш e-mail не будет опубликован.